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1 Executive Summary

The purpose of this study is to discover the association of the probability whether carrying a serious

genetic disease (SGD) and various blood markers obtained by the blood tests which is possible to screen

elevated levels in SGD. Then establish a predictive model based on effectiveness and low cost. This infor-

mation would give further insight on age of the subjects took the blood test and the time that the blood

tests were taken. In the future, the results from this study could help with predicting the probability of

having serious genetic disease based on own blood test results and personal background.

The researchers are interested in screening women for the genetic predisposition for SGD by a predic-

tive model based on effective and inexpensive blood tests and they have collected 209 samples from 209

women of four blood tests results. The response variable of this experiment is binary dependent variable

SGD which indicates 1 for known carrier of SGD and 0 for unknown carrier of SGD. There are a few

predictor variables that were collected as following: SubjID (Unique ID for subjects), SampleNo (Blood

sample number), Age (Age in years), Month (1=January,...,12=December), Year (in years), and BM1,

BM2, BM3, BM4 (concentration of blood markers). The goal of this experiment is to determine which

of these variables can effectively predict the probability whether carrying SGD or not. The possibility of

influence on blood tests’ measurements by water supply change is also of interest.

However, before conducting any analyses on this case, there are several obstacles that must be ad-

dressed. First, there are total 15 missing values rather in blood marker 3 or blood marker 4, and the

researcher did not explain the reasons of missing values occurred. The samples contained missing values

represent part of important information of specific years and it will be necessary to fill in the missing

values. The second issue should be investigated before the analysis is characteristic of each samples. The

rough ages interval and seasons are interests of this study, then the specific ages and months will be cat-

egorized into new levels for better discussion. Lastly, the contradiction between researchers explanation

and dataset needs to be clarified before starting the analyses.

The analyses conducted during this study includes logistic regressions, which are used to select signif-

icant variables to predict the probability whether carrying SGD or not. A few diagnostics are performed

to strengthen the selected model and interpret the reason of dropping particular three observations. After

clarifying the significance of each variables included in the final model, the model contains blood marker

1, 3 and 4, and also the variable Age. Several one-way analysis of variances are also implemented in order

to test the relationship among each blood markers and time variables, which may indicates the effect from

water supply change on blood markers’ measurements. The blood marker 2 are the only marker tested to

react to time change but it is not included in the selected model.

On the other hand, there are several potential problems might bias the results of this study such as

the particular years included missing values in blood marker 3 and 4 will probably impact the final model

if it contains special trend.
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2 Introduction

The binary results whether an asymptomatic carrier of serious genetic disease (SGD) have provided

with 209 women in the sample. Each of these known and unknown carriers has seven different factors that

are associated with it. These variables are: SubjID, SampleNo, Age, Month, Year, BM1, BM2, BM3, and

BM4. Each of variables of blood markers BM1,BM2,BM3,BM4 are continuous measured in concentration

and variables SubjID and SampleNo are categorical. Variables Age, Month, Years are numerical but will

be reassigned in appropriate categories for better comprehension in subsequent section and explained the

reasons. The probability of a SGD carriers is important since it is the expected prediction of interest and

the researchers want to find influential various factors on it. They also desire the effectiveness and low

cost of the experiment of screening genetic susceptibility for SGD; hence, the less blood tests included the

more preferable they are. Otherwise, they expected to determine the probable influence on blood markers’

measurements by the water supply change of the laboratory.

In the next Data Summary section 3 of this paper, an exploratory data analysis is conducted. The data

will be described in more detail, as well as further explanation of the meaning for each variable. In order

to decide on which statistical techniques will be best to analyze the data, it is important to conduct some

preliminary phases of exploratory analysis on each variable. Once there is a better comprehension of each

variable, a decision can be made on the best statistical techniques to continue the analysis. In the Analysis

section 4, the data is analyzed by logistic regression. The relevant assumption will be incorporated along-

side visuals, such as S-shaped curves graphs and residual plots. Then the predictive model will be selected

and validated. Additionally, several tests and graphs will be present for clarifying the association among

concentration of blood markers and time, which attempting to specify the time of water supply change.

Next, a conclusion will be drawn from the analysis and it will contain an overview of predictive model and

overall work and probable extended concerns in this project. Lastly, there are appendixes for various fig-

ures and tables that were not included in the earlier sections and for R code that are used for whole project.

3 Data Summary

The dataset is composed of 209 sampled women with 75 SGD carriers and 134 non-SGD carriers. In

this study, the researchers are interested in predicting SGD carrier according to deficient and inexpensive

blood tests. The variables and their descriptions from the dataset are:

• SGD - Binary variable for 209 target women whether carrying SGD (1) or not carrying SGD (0)

• SubjID - Unique ID for each subject from which one or more blood samples were obtained

• SampleNo - Blood sample number of the subject is contribeted

• Age - Age of subject in years, range from 20 to 60 years old

• Month - Month of the year in which blood sample was taken, 1 for January,..., 12 for December

• Year - Year in which blood sample was taken, range from 1988 to 1991

• BM1 - Concentration of blood marker 1 from frozen blood samples

• BM2 - Concentration of blood marker 2 from frozen blood samples

• BM3 - Concentration of blood marker 3 from fresh samples, recorded missing value as -99

• BM4 - Concentration of blood marker 4 from fresh samples, recorded missing value as -99
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According to Table 3.1 below, the results showed that all the samples consist of missing values in BM3

were taken either in 1990 or 1991 and in BM4 were taken in 1988. Since there are only 7 samples from

1988 and 3 results from 1991, which all contains missing values, it is not tenable to eliminate all incomplete

samples due to instability for reduction of sample size and the following analyses may be questioned by

possible influence of years on blood markers results. In this research, using classification and regression

tree (CART) to predict the missing data based on the present values, which is the method regards each

variable BM3 and BM4 as response and other three blood markers variables as explanatory variables to

predict missing values and fill in.

Table 3.1: Missing values in BM3 and BM4 (15 duplicates)

SGD subjID sampleNo age month year BM1 BM2 BM3 BM4

0 1 1 27 10 1988 22 99 10.8 -99

0 11 1 31 11 1988 29 94 11.8 -99

0 13 1 22 12 1988 22 85.5 15 -99

0 15 4 25 10 1988 41 87.3 15 -99

0 17 1 26 12 1988 28 93.5 7 -99

0 19 1 38 12 1988 45 108 13.7 -99

0 26 2 24 10 1988 26 94.2 11.7 -99

1 597 2 32 5 1990 79 9 -99 137

1 831 4 36 11 1990 144 24.4 -99 329

1 837 3 40 12 1990 123 25.4 -99 275

1 840 4 32 12 1990 610 111.7 -99 593

1 857 2 30 12 1990 510 60.2 -99 272

1 875 3 36 1 1991 55 20.7 -99 262

1 880 5 31 1 1991 45 13.8 -99 217

1 882 3 59 1 1991 25 9.2 -99 316

Otherwise the lucid relationship between blood markers and SGD carriers, the researchers are also

interested in the effects from ages of samples, seasons and years they were taken. The particular ages and

months will be too specific in this case. For better classification, establish new categories of variable Age

and Month as following rules:

• Age - Divided into five categories in years as younger than 25, 26 to 30, 31 to 35, 36 to 40, and older

than 40 with level 1, 2, 3, 4, or 5

• Season - Divided into four categories as month 9 to 11, month 12 to 2, month 3 to 5, and month 6

to 8 with level Fall, Winter, Spring, or Summer

• Year - Divided into four categories in year with level 1988, 1989, 1990, or 1991

Besides the missing values in blood markers and categorizing three other variables, the inconsistency

of variable SubjID and Age is needed to develop some assumptions. According to the samplers and dataset,

there are two illogical statements: ”The data are composed of 209 women and some of them took blood

marker tests twice”, and ”The subject ID is unique for each subject, but the dataset showed different

subjects for the same subject ID”, which are presented by Table 6.3. However, if the variable SubjID and

SampleNo are neglected, the dataset seems reasonable to regard as 209 different individuals since those
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samples with the same ID have all different values of other variables. Consequently, this project will work

under the assumption that regarding 209 samples as all different sampled women.

4 Analysis

4.1 Assumption

To begin the analysis, certain assumptions must be checked. First of all, the explanatory variables

Blood Markers 1 to 4 are examined in order to see how the values of each individual blood marker varies

in the probability whether carrying SGD. A Logistics Regression is performed in order to predict the

probability of carrying SGD based on the results of blood markers, sample’s age and the time that the

sample was taken. Points of interest for the study are in both effectiveness and economical cost of detecting

carriers. Before conducting the analyses, the following assumptions must be met:

• The dependent variable should be binary

• The factor level 1 of dependent variable should represent desired outcome, which is SGD carrier

• The independent variables should be linearly related to the log odds

• Each observation should be independent

To verify that these assumptions are met, the method of data collection are considered, and then

several graphs composed of S-shaped growth curve are produced. Since mentioned in previous section, the

dependent variable SGD is binary whose level 1 is for SGD carriers and level 0 is for non-SGD carriers.

According to Figure 6.1 in Appendix, set π(x) as the probability whether carrying SGD or not, the

approximate S-shapes in each plots of π(x) against blood marker are shown and the linearities between

log odds and each blood marker are shown after taking logistic function of π(x).

In order to see the independence among each observation, it is showed that the residuals are all

approximately distributed around horizontal line 0 depending on the residual plot of residuals against

fitted values with loess smooth curve in Figure 6.2 in Appendix. Though there are slightly ascending and

descending trends of the blue loess smooth curve, they are very subtle and allowed to ignore. Therefore,

all the assumptions are satisfied and the model building process can continue.

4.2 Model Selection

In order to select the significant model for predicting probability whether a SGD carrier or not, apply

the most general approach that splitting dataset into two pieces, training set and validation set, establish

the model based on training set, and test the selected model by validation set. In this case, randomly

sample 85% of observations, 177 observations, to training dataset; remained 15% of observations, 32

observations, for validating.

Employ 85% dataset and proceed the full stepwise procedure as the output showed in Table 7.1 in

Appendix, it is known that the model included blood marker BM1, BM3, and BM4, and the categorical

variable Age is selected and performed as below:

log
π(x)

1 − π(x)
= β0 + β1(BM1) + β2(BM3) + β3(BM4) + β(Age) + ε

where π(x) = probability whether carrying SGD or not

(1)
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However, the model only consider first-order independent variables, the interaction and quadratic

terms are all ignored in this stage. The higher order terms will be discussed in following Diagnostics

section and adjusted if it is inadequate.

4.3 Model Validation

Exploit the rest 15% dataset and perform the cross validation approach. Compared following results

of each dataset based on the selected model concluded in previous section, the comparison is showed as

Table 4.2 below.

For the coefficient estimates of both dataset, obvious differences are detected among each level of Age

and the variable BM1. However, for the root mean square error (RMSE) and Pseudo R2 values above,

both datasets have similar results. Roughly, it can be concluded that even the coefficient estimates are

diverse, the variability that these variables can explain are still the same, which attributes the difference

to other possible reasons.

There are several problems may cause these discrepancies: First, There are only 32 observation

remained in the validation dataset, which is close to the minimum sample size of defined large sample,

thus the results may not be robust because of the small sample size. Moreover, the possible effect by

influential observation, outliers, or multi-collinearity are not considered particularly in this stage, which

probably and seriously increase or reduce the prediction of π(x). Among these reasons, succeeding section

is going to diagnose the conceivable problems that may not be noticed previously.

Table 4.2: Cross Validation

Training

dataset

Validation

dataset

Coefficients

(Intercept) 0.333 -20.181

BM1 7.774 1.869

BM3 1.572 2.347

BM4 1.586 1.182

Age2 0.625 20.688

Age3 1.550 20.657

Age4 -0.145 3.256

Age5 20.707 37.777

RMSE 0.062 0.097

Pseudo R2

McFadden R2 0.693 0.557

CoxSnell R2 0.596 0.512

Nagelkerke R2 0.817 0.707

4.4 Diagnostics

Based on the residual plot of chosen model (1) in Table 6.3 in Appendix, the loess smooth curve is

more close to the line of residuals equal to zero, which means the fit of new model is more appropriate than

the full model. However, as the problems mentioned in prior sections, the further discussions of marginal

effects, outliers, and collinearity will be performed to strengthen the model or the necessity of adjustment.
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4.4.1 Marginal Effects

In order to diagnose the effects of individual variable on probability π(x), the marginal effects are

utilized. Remove the effect of the other variable from response logit(π(x)) and independent variable that

is interested in, and obtain the residuals from each model and residual plots of logit(π(x)) against curious

variables. In the Figure 4.1, all plots behaved positively increasing trends and the linear terms in each

variables may be useful, which strengthen the decision of model selection.
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Figure 4.1: Marginal Effect

4.4.2 Outliers

As reported by the Cook’s Distance Figure 4.2 below, there are several observations are considered as

potential outliers. For instance, the cook’s distance marked by observations’ numbers in the Figure 4.2 are

those possessing extremely larger cook’s distance than most of other observations: Observation 52, 171,

and 191 have cook’s distance values larger than 0.08 and observation 92, 195, and 207 have have cook’s

distance values larger than 0.06. Since other possible problems are successively proved by either graphs

or tests, the outliers could be the reason influence the coefficient estimates in previous parts. On account

of not reducing the sample size as far as possible, only regard three observations as outliers: Eliminate

observation 52, 171, and 191 from the dataset in this stage.
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Figure 4.2: Cook’s Distance

4.4.3 Multi-collinearity

In the interest of not including higher-orders or interaction terms in the model, measured the inflation

of standard errors compared to a lack of linear relationship and obtained the variance inflation factors

(VIFs). As stated in Table 6.4 in Appendix, all the VIF values are larger than 1 but not extremely

large. Since practical cases are always not perfect to get VIFs equal to 0 to state that there are no linear

relationship among the variable and other variables, the VIFs acquired here are tenable enough to conclude

that there are no multi-collinearity among the variables. Consequently, the probable cause of failure in

model validation section is attributed to outliers. After comparing each elements of the selected model

(1) based on the whole dataset except for three assumed outliers and the selected model (1) based on

the training dataset in Table 6.5 in Appendix, all of the coefficients are similar and the chosen model is

clarified.

4.5 Underlying Effect

As the researchers have mentioned, the water supply of the laboratory was changed during the course of

this study at unknown exact timing and it was an underlying effect that might involve in the measurements

of blood markers.

In Figure 6.4, there are intense ebbs and flows in blood marker 1 and 2 during summer time in 1990.

At the same time, blood marker 3 and 4 do not have exceptional displays. After four individual one-

way analysis of variance (ANOVA) tests as outputs in Table 7.2 for testing the association among each

blood markers and time variables–variable Season and Year, the results showed that blood marker 2 has

significant negative relationship with variable Year. Therefore, there are two conjectures of the reason:

First, the water supply change might happen during summer time in 1990 but only influence measurement

of blood marker 2; Second, the water supply change might happen during some other timing and it did not

directly affect measurement of blood markers. There might be other circumstance happened at that time

to make the highs and lows occur in blood marker 1 and 2. Therefore, since the most concerned blood

marker 2 here is not contained in the selected model, the model (1) is still available after this discussion.
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5 Conclusion

After conducting the analysis, it is able to conclude a model that were effective predictors for prob-

ability of a SGD carrier. The selected model includes BM1, BM3, BM4 (Blood Marker 1, 3, and 4),

and Age. Throughout the analysis performed formerly, the logistic regression was used under complete

assumption checks and discarded insignificant variables as BM2, Season, and Year from the full model.

Given that the dataset did not involve collinearity among variables and the marginal effects all showed

obvious linearity between each variable and probability, the outliers was founded that is the possible factor

caused some biases. Then, those outliers were considered to eliminate from the dataset at the end and the

model became more appropriate and reliable. The model prediction would be more accurate if a larger

sample size in terms of the number of women.

As mentioned in the previous sections, there are still several possible factors that would uninten-

tionally affect predicting probability whether a SGD carrier. First of all, back to the most beginning

assumption supposed, the analysis was proceeded by regarding all samples are from different individual

women and none of them took more than once blood test. If the typo in the dataset means opposite way

that those samples with the same subject ID should be considered as being tested by the same women and

the contradicted ages of both are typos, then how to weight the duplicates in the analysis will be another

concern needed to deeply discuss. Secondly, the analysis were conducted by filling those missing values

based on available data. Equally as the reason they are filled at the first section in this case, most of the

missing values represented the data of particular whole year. If analyzed without datapoint with missing

values, the results would be considerably biased. The statement also indicates that if there were specific

circumstance in those particular years related to blood marker 3 and 4, the results might be significantly

different.

Lastly, the researchers are interested in cost down but the final model selected contains both blood

markers from fresh samples. Due to the potential problem of missing values, the researchers may expect

to only contain one of these two blood markers and it would need more suitable analysis to extend this

demand.
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6 Appendix: Figures and Outputs
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Figure 6.1: Scatter Matrix
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Table 6.3: Duplicated Subjects (17 duplicates)

SGD subjID sampleNo age month year BM1 BM2 BM3 BM4

0 133 1 27 8 1989 15 87 13.5 232

0 133 1 32 7 1989 28 82.5 17.4 144

0 255 1 29 2 1990 74 80.4 8.9 207

1 255 1 35 6 1989 48 98 16.4 233

0 257 1 36 2 1990 40 72.7 7 131

1 257 1 34 6 1989 73 105.5 17 285

0 258 1 30 2 1990 69 66.7 8.7 119

1 258 1 38 6 1989 286 109.5 31.9 260

0 273 1 27 3 1990 27 87.2 12.5 99

1 273 1 53 6 1989 59 93 22.2 240

1 291 1 29 8 1989 53 76 14 174

0 291 6 39 4 1990 25 98.7 10 174

0 293 1 31 5 1990 35 90.3 15.3 124

1 293 1 42 8 1989 78 118 15.5 212

0 353 2 25 6 1990 59 72.5 10.7 314

1 353 3 35 9 1989 42 100.1 17.1 184

1 593 1 33 5 1990 57 88 8.9 190

0 593 2 34 7 1990 87 76.3 6 87

1 597 2 32 5 1990 79 9 11 137

0 597 3 27 7 1990 24 57.5 5.6 130

1 633 1 53 6 1990 101 77.5 11.7 280

0 633 3 28 9 1990 72 66.3 16.4 156

0 634 1 24 9 1990 25 92 14 166

1 634 2 36 6 1990 104 87.5 16.7 256

0 640 1 25 10 1990 42 65.5 13.3 216

1 640 2 45 6 1990 35 86.3 14.4 184

1 647 1 59 6 1990 560 106 21 345

0 647 2 34 10 1990 48 83 13.7 228

0 649 1 36 10 1990 55 78.2 21.8 188

1 649 1 48 6 1990 115 79 14.2 258

0 650 1 22 11 1990 30 104 22.6 230

1 650 2 39 6 1990 228 104 10.2 236

0 651 1 21 11 1990 26 79.3 16.4 123

1 651 2 26 6 1990 700 90 49.1 343
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Table 6.4: Variance Inflation Factor (VIF)

Variables VIF

SGD 1.627

BM1 2.503

BM2 1.020

BM3 2.628

BM4 2.057

Table 6.5: Cross Comparison

Training

dataset

Fulldataset

w/o outliers

Coefficients

(Intercept) 0.333 -0.1305276

BM1 7.774 8.3367543

BM3 1.572 2.1336028

BM4 1.586 1.4086971

Age2 0.625 1.6500766

Age3 1.550 2.3435243

Age4 -0.145 0.4195481

Age5 20.707 21.4429961

RMSE 0.062 0.06151851

Pseudo R2

McFadden R2 0.693 0.6949477

CoxSnell R2 0.596 0.5964924

Nagelkerke R2 0.817 0.8181415
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7 Appendix: R code and outputs

#####################################################

####### [MS Qualifying Examination], May, 2017 ######

############### by examinee 9590 ####################

################ 050517--050717 #####################

#####################################################

sgd=

read.csv("~/Documents/1- UGA/[QEM]/QEM-050517/sgdData.csv", header = T)

#suppressWarnings( = read.csv("~/Documents/1- UGA/[QEM]/QEM-050517/.csv", header = T) )

#par(mfrow=c(2,2),mar=c(4.5,4.5,1.5,2), oma = c(0,0,2.5,0))

#col="cadetblue","darkolivegreen3","indianred1","tan1"

#capuchins.n2[capuchins.n2[,"group2"]=="C",]$Crack

#----------------------------------------------------------------------#

### Data Summary ###

#----------------------------------------------------------------------#

#1 missing values created

nan = sgd[(sgd[,"BM3"]==-99 | sgd[,"BM4"]==-99),]

na = sgd[!(sgd[,"BM3"]==-99 | sgd[,"BM4"]==-99),]

# created missing values in BM3

coef3 = as.vector(summary(lm(BM3~BM1+BM2+BM4,data=na))$coef[,1])

BM3n=rep(NA,nrow(sgd))

for(i in 1:nrow(sgd)){

if(sgd[i,"BM3"]==-99){

BM3n[i] = as.matrix(sgd[i,c("BM1","BM2","BM4")])%*%coef3[2:4]+coef3[1]}else{

BM3n[i] = sgd[i,"BM3"]}}

# created missing values in BM4

coef4 = as.vector(summary(lm(BM4~BM1+BM2+BM3,data=na))$coef[,1])

BM4n=rep(NA,nrow(sgd))

for(i in 1:nrow(sgd)){

if(sgd[i,"BM4"]==-99){

BM4n[i] = as.matrix(sgd[i,c("BM1","BM2","BM3")])%*%coef4[2:4]+coef4[1]}else{

BM4n[i] = sgd[i,"BM4"]}}

# new data without missing values

sgd=cbind(sgd,BM3n,BM4n)

# use Cart method to fill in the missing values

install.packages("mice")

library("mice")

sgd[sgd[,"BM4"]==-99,][,"BM4"]=NA

sgd[sgd[,"BM3"]==-99,][,"BM3"]=NA

micedata = mice(sgd, m=3, maxit=50, method="cart",seed=500)

sgd = complete(micedata,2)

sgd[sgd[,"year"]==1991,]
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#2 age group

# <=25; (25,30]; (30,35]; (35,40]; >40

agen=rep(NA,nrow(sgd))

for(i in 1:nrow(sgd)){

if(sgd[i,"age"]<=25){agen[i]=1}

else if(sgd[i,"age"]<=30){agen[i]=2}

else if(sgd[i,"age"]<=35){agen[i]=3}

else if(sgd[i,"age"]<=40){agen[i]=4}

else {agen[i]=5}

}

# new data with group age

sgd=cbind(sgd,agen)

#3 change monthes into season

# 9/10/11:Fall, 12/1/2:Winter, 3/4/5:Spring, 6/7/8:Summer

season=rep(NA,nrow(sgd))

for(i in 1:nrow(sgd)){

if(sgd[i,"month"]==9|sgd[i,"month"]==10|sgd[i,"month"]==11){season[i]="Fall"}

else if(sgd[i,"month"]==12|sgd[i,"month"]==1|sgd[i,"month"]==2){season[i]="Winter"}

else if(sgd[i,"month"]==3|sgd[i,"month"]==4|sgd[i,"month"]==5){season[i]="Spring"}

else {season[i]="Summer"}

}

# new data with group season

sgd=cbind(sgd,season)

#4 duplicated ID -> decided to ignore

dup= sgd[duplicated(sgd$subjID)|duplicated(sgd$subjID,fromLast=T),]

nrow(sgd[duplicated(sgd$subjID),]) #17

nrow(sgd[!duplicated(sgd$subjID),]) #192

set.seed(500)

dup.sa1 = sample(seq_len(nrow(dup[dup[,"SGD"]==1,])),size = 0.5*nrow(dup[dup[,"SGD"]==1,]))

dup.sa0 = sample(seq_len(nrow(dup[dup[,"SGD"]==0,])),size = 0.5*nrow(dup[dup[,"SGD"]==0,]))

sgd = sgd[-as.numeric(row.names(dup[dup[,"SGD"]==1,][-dup.sa1,])),]

sgd = sgd[-as.numeric(row.names(dup[dup[,"SGD"]==0,][-dup.sa0,])),]

nrow(sgd)

#----------------------------------------------------------------------#

### Analysis ###

#----------------------------------------------------------------------#

### 1 Assumption check -------------------------------------------#

#----------------------------------------------------------------------#

summary(sgd)

# S-shaped check
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l1 = glm(SGD~BM1,family=’binomial’,data = sgd)

l2 = glm(SGD~BM2,family=’binomial’,data = sgd)

l3 = glm(SGD~BM3,family=’binomial’,data = sgd)

l4 = glm(SGD~BM4,family=’binomial’,data = sgd)

# Draw Curves

par(mfrow=c(2,4),mar=c(4.5,4.5,1.5,2.5), oma = c(0,0,1.5,1.5))

# BM1

r = range(sgd$BM1)

x_range = seq(r[1],r[2],1); x_range = as.integer(x_range)

y = predict(l1,data.frame(BM1=x_range),type="response")

plot(sgd$BM1, sgd$SGD, pch = 16,

xlab = "BM1", ylab = expression(pi(x)),

main = expression(paste("Plot of ",pi(x)," vs BM1")))

lines(x_range,y)

plot(x_range, log(y/(1-y)), pch = 16,

xlab = "BM1", ylab = expression(logit(pi(x))), type="n",

main = expression(paste("Plot of ",logit(pi(x))," vs BM1")))

lines(x_range,log(y/(1-y)))

# BM2

r = range(sgd$BM2)

x_range = seq(r[1],r[2],1); x_range = as.integer(x_range)

y = predict(l2,data.frame(BM2=x_range),type="response")

plot(sgd$BM2, sgd$SGD, pch = 16,

xlab = "BM2", ylab = expression(pi(x)),

main = expression(paste("Plot of ",pi(x)," vs BM2")))

lines(x_range,y)

plot(x_range, log(y/(1-y)), pch = 16,

xlab = "BM2", ylab = expression(logit(pi(x))), type="n",

main = expression(paste("Plot of ",logit(pi(x))," vs BM2")))

lines(x_range,log(y/(1-y)))

# BM3

r = range(sgd$BM3)

x_range = seq(r[1],r[2],1); x_range = as.integer(x_range)

y = predict(l3,data.frame(BM3=x_range),type="response")

plot(sgd$BM3, sgd$SGD, pch = 16,

xlab = "BM3", ylab = expression(pi(x)),

main = expression(paste("Plot of ",pi(x)," vs BM3")))

lines(x_range,y)

plot(x_range, log(y/(1-y)), pch = 16,

xlab = "BM3", ylab = expression(logit(pi(x))), type="n",

main = expression(paste("Plot of ",logit(pi(x))," vs BM3")))

lines(x_range,log(y/(1-y)))

# BM4

r = range(sgd$BM4)

x_range = seq(r[1],r[2],1); x_range = as.integer(x_range)

y = predict(l4,data.frame(BM4=x_range),type="response")
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plot(sgd$BM4, sgd$SGD, pch = 16,

xlab = "BM2", ylab = expression(pi(x)),

main = expression(paste("Plot of ",pi(x)," vs BM4")))

lines(x_range,y)

plot(x_range, log(y/(1-y)), pch = 16,

xlab = "BM4", ylab = expression(logit(pi(x))), type="n",

main = expression(paste("Plot of ",logit(pi(x))," vs BM4")))

lines(x_range,log(y/(1-y)))

par(mfrow=c(1,1),mar=c(8,4.5,1.5,2.5), oma = c(0,0,1.5,1.5))

### Independence check

## full model

lm.f = glm(SGD~scale(BM1)+scale(BM2)+scale(BM3)+scale(BM4)

+factor(agen)+factor(season)+factor(year)

,data = sgd, family="binomial")

summary(lm.f)

par(mfrow=c(1,2))

plot(lm.f,which=1)

fitted.values(lm.f)

install.packages("ggplot2")

library("ggplot2")

res =

ggplot(lm.f, aes(.fitted, .resid)) + geom_point()+

stat_smooth(method="loess")+

geom_hline(yintercept=0, col="red", linetype="dashed")+

xlab("Fitted values")+ ylab("Residuals")+

ggtitle("Residual vs Fitted Plot")+ theme_bw()+

theme(plot.title = element_text(hjust = 0.5))+

theme(plot.margin = unit(c(1,0.8,0.8,1), "cm"))

res

### 2 Model Selection -------------------------------------------#

#----------------------------------------------------------------------#

# sample into two data

set.seed(500)

smp.size = floor(0.85*nrow(sgd))

sgd.sp = sample(seq_len(nrow(sgd)),size = smp.size)

sgd.t = sgd[sgd.sp,]

sgd.v = sgd[-sgd.sp,]

# model building data

lm.t = glm(SGD~scale(BM1)+scale(BM2)+scale(BM3)+scale(BM4)

+factor(agen)+factor(season)+factor(year)

,data = sgd.t, family="binomial")

summary(lm.t)
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plot(lm.t) #independence

step(lm.t, direction = "both")

Table 7.1: Output: Stepwise Procedure

Start: AIC=91.95

SGD ~ scale(BM1) + scale(BM2) + scale(BM3) + scale(BM4) + factor(agen) +

factor(season) + factor(year)

Df Deviance AIC

- factor(season) 3 64.095 88.095

- scale(BM2) 1 63.227 91.227

<none> 61.947 91.947

- factor(year) 3 68.877 92.877

- scale(BM3) 1 70.327 98.327

- scale(BM4) 1 71.591 99.591

- factor(agen) 4 83.920 105.920

- scale(BM1) 1 82.183 110.183

Step: AIC=88.09

SGD ~ scale(BM1) + scale(BM2) + scale(BM3) + scale(BM4) + factor(agen) +

factor(year)

Df Deviance AIC

- scale(BM2) 1 65.409 87.409

<none> 64.095 88.095

- factor(year) 3 70.893 88.893

+ factor(season) 3 61.947 91.947

- scale(BM3) 1 71.121 93.121

- scale(BM4) 1 72.699 94.699

- factor(agen) 4 87.583 103.583

- scale(BM1) 1 83.811 105.811

Step: AIC=87.41

SGD ~ scale(BM1) + scale(BM3) + scale(BM4) + factor(agen) + factor(year)

Df Deviance AIC

- factor(year) 3 71.120 87.120

<none> 65.409 87.409

+ scale(BM2) 1 64.095 88.095

+ factor(season) 3 63.227 91.227

- scale(BM3) 1 73.109 93.109

- scale(BM4) 1 75.547 95.547

- scale(BM1) 1 84.095 104.095

- factor(agen) 4 93.493 107.493
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Step: AIC=87.12

SGD ~ scale(BM1) + scale(BM3) + scale(BM4) + factor(agen)

Df Deviance AIC

<none> 71.120 87.120

+ factor(year) 3 65.409 87.409

+ scale(BM2) 1 70.893 88.893

+ factor(season) 3 68.954 90.954

- scale(BM3) 1 78.769 92.769

- scale(BM4) 1 83.271 97.271

- scale(BM1) 1 87.777 101.777

- factor(agen) 4 99.109 107.109

Call: glm(formula = SGD ~ scale(BM1) + scale(BM3) + scale(BM4) + factor(agen),

family = "binomial", data = sgd.t)

Coefficients:

(Intercept) scale(BM1) scale(BM3) scale(BM4)

0.3332 7.7735 1.5718 1.5857

factor(agen)2 factor(agen)3 factor(agen)4 factor(agen)5

0.6248 1.5496 -0.1455 20.7075

Degrees of Freedom: 176 Total (i.e. Null); 169 Residual

Null Deviance: 231.6

Residual Deviance: 71.12 AIC: 87.12

lm.c = glm(SGD~scale(BM1)+scale(BM3)+scale(BM4)+factor(agen),

family="binomial",data = sgd.t)

summary(lm.c)

plot(lm.c)

### 3 Model Validation -------------------------------------------#

#----------------------------------------------------------------------#

lm.v = glm(SGD~scale(BM1)+scale(BM3)+scale(BM4)+factor(agen),

family="binomial",data = sgd.v)

# coefficient

summary(lm.c)$coefficients[,1]

summary(lm.v)$coefficients[,1]

# estimated standard deviation

#summary(lm.c)$coefficients[,2]

#summary(lm.v)$coefficients[,2]

# root mean square error

pred.c = predict(lm.c, data = sgd.t, type = "response")

RMSE.c <- mean((sgd.t$SGD - pred.c)^2)

pred.v = predict(lm.v, data = sgd.v, type = "response")
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RMSE.v <- mean((sgd.v$SGD - pred.v)^2)

#R2

install.packages("pscl")

library("pscl")

pR2(lm.c)[4:6]

pR2(lm.v)[4:6]

### 4 Diagonostics -------------------------------------------#

#----------------------------------------------------------------------#

lm = glm(SGD~scale(BM1)+scale(BM3)+scale(BM4)+factor(agen),

family="binomial",data = sgd)

summary(lm)

res.c =

ggplot(lm, aes(.fitted, .resid)) + geom_point()+

stat_smooth(method="loess")+

geom_hline(yintercept=0, col="red", linetype="dashed")+

xlab("Fitted values")+ ylab("Residuals")+

ggtitle("Residual vs Fitted Plot")+ theme_bw()+

theme(plot.title = element_text(hjust = 0.5))+

theme(plot.margin = unit(c(1,0.8,0.8,1), "cm"))

res.c

# marginal effects

install.packages("effects")

library("effects")

m = glm(SGD~scale(BM1)+scale(BM3)+scale(BM4)+agen,data = sgd,family = "binomial")

plot(allEffects(m, default.levels=50,multiline=T,factor.names=T))

# outliers

install.packages("car")

library("car")

cook = cooks.distance(lm)

plot(cook, type = "h", main = "Cook’s Distance Plot",col = "tan1", pch = 19)

text(row.names(as.matrix(cook[cook>=0.06])),

cook[cook>=0.06],labels= row.names(as.matrix(cook[cook>=0.06])))

x = as.matrix(cook[cook>=0.06])

y = cook[cook>=0.06]

la= c(52,92,171,191,195,207)

ck =

ggplot(lm, aes(seq_along(.cooksd),.cooksd))+

geom_bar(stat="identity", position="identity")+

xlab("Obs. Number")+ ylab("Cook’s distance")+

ggtitle("Cook’s distance")+ theme_bw()+

theme(plot.title = element_text(hjust = 0.5))+
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theme(plot.margin = unit(c(1,0.8,0.8,1), "cm"))+

geom_hline(yintercept=0.06, col="red", linetype="dashed")+

geom_hline(yintercept=0.08, col="blue", linetype="dashed")+

annotate("text", x = la, y = y+0.003, label = la,size=3.25)

ck

new = sgd[-c(52,171,191),]

ob = glm(SGD~scale(BM1)+scale(BM3)+scale(BM4)+factor(agen),

family="binomial",data = new)

plot(ob)

# coefficient

summary(lm.c)$coefficients[,1]

summary(ob)$coefficients[,1]

# estimated standard deviation

#summary(lm.c)$coefficients[,2]

#summary(lm.v)$coefficients[,2]

# root mean square error

pred.o= predict(lm.c, data = sgd.t, type = "response")

RMSE.o <- mean((sgd.t$SGD - pred.o)^2)

pred.n = predict(ob, data = new, type = "response")

RMSE.n <- mean((new$SGD - pred.n)^2)

#R2

install.packages("pscl")

library("pscl")

pR2(lm.c)[4:6]

pR2(ob)[4:6]

# multi-collinearity

install.packages("usdm")

install.packages("sp")

install.packages("raster")

library("usdm")

vif(sgd[,c(1,7,8,9,10)])

### 5 Underlying Effect -------------------------------------------#

#----------------------------------------------------------------------#

# Time Series Plot

# sort the data

time = new[order(new$year , new$month),]

which(time[,"year"]==1988) #1,7

which(time[,"year"]==1989) #8,71

which(time[,"year"]==1990) #72, 203

which(time[,"year"]==1991) #207, 209

mon.1989=matrix(NA,12,2)

for (i in 1:12){
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mon.1989[i,1] = min(which(time[,"year"]==1989 & time[,"month"]==i))

mon.1989[i,2] = i}

mon.1989 = mon.1989[is.finite(mon.1989[,1]),]

mon.1989[,2] = c("Jan","Feb","Mar","Jun","Jul",

"Aug","Sep","Oct","Nov","Dec")

mon.1990=matrix(NA,12,2)

for (i in 1:12){

mon.1990[i,1] = min(which(time[,"year"]==1990 & time[,"month"]==i))

mon.1990[i,2] = i}

mon.1990 = mon.1990[is.finite(mon.1990[,1]),]

mon.1990[,2] = c("Jan","Feb","Mar","Apr","May","Jun",

"Jul","Aug","Sep","Oct","Nov","Dec")

lab1 = c("1988","1989","1990","1991")

lab2 = c(mon.1989[-c(1,2,3,10),2],mon.1990[-c(1,12),2])

mon = c(mon.1989[-c(1,2,3,10),1],mon.1990[-c(1,12),1])

yea = c(1,8,72,204)

# BM1

par(mfrow=c(1,1),mar=c(4.5,4.5,1,1.5), oma = c(0,0,1.5,1.5))

plot(new$BM1,type="n",main = "Time Series of BM1",

xlab = "month/year", ylab = "BM1", xaxt="n")

grid(lty=9, col=gray(0.85))

lines(new$BM1, type=’l’, col=4)

axis(1,labels=lab1,at=yea, cex.axis=0.85,

las=2, mgp=c(3, 1, 0), tck=-0.045)

axis(1,labels=lab2,at=mon, cex.axis=0.65,

las=2,mgp=c(3,0.5,0),tck=-0.02)

abline(v=mon.1990[c(6,9),1],col="red",lty=2)

# BM2

par(mfrow=c(1,1),mar=c(4.5,4.5,1,1.5), oma = c(0,0,1.5,1.5))

plot(new$BM2,type="n",main = "Time Series of BM2",

xlab = "month/year", ylab = "BM2", xaxt="n")

grid(lty=9, col=gray(0.85))

lines(new$BM2, type=’l’, col=4)

axis(1,labels=lab1,at=yea, cex.axis=0.85,

las=2, mgp=c(3, 1, 0), tck=-0.045)

axis(1,labels=lab2,at=mon, cex.axis=0.65,

las=2,mgp=c(3,0.5,0),tck=-0.02)

abline(v=mon.1990[c(6,9),1],col="red",lty=2)

# BM3

par(mfrow=c(1,1),mar=c(4.5,4.5,1,1.5), oma = c(0,0,1.5,1.5))

plot(new$BM3,type="n",main = "Time Series of BM3",

xlab = "month/year", ylab = "BM3", xaxt="n")
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grid(lty=9, col=gray(0.85))

lines(new$BM3, type=’l’, col=4)

axis(1,labels=lab1,at=yea, cex.axis=0.85,

las=2, mgp=c(3, 1, 0), tck=-0.045)

axis(1,labels=lab2,at=mon, cex.axis=0.65,

las=2,mgp=c(3,0.5,0),tck=-0.02)

abline(v=mon.1990[c(6,9),1],col="red",lty=2)

# BM4

par(mfrow=c(1,1),mar=c(4.5,4.5,1,1.5), oma = c(0,0,1.5,1.5))

plot(new$BM4,type="n",main = "Time Series of BM4",

xlab = "month/year", ylab = "BM4", xaxt="n")

grid(lty=9, col=gray(0.85))

lines(new$BM4, type=’l’, col=4)

axis(1,labels=lab1,at=yea, cex.axis=0.85,

las=2, mgp=c(3, 1, 0), tck=-0.045)

axis(1,labels=lab2,at=mon, cex.axis=0.65,

las=2,mgp=c(3,0.5,0),tck=-0.02)

abline(v=mon.1990[c(6,9),1],col="red",lty=2)

Table 7.2: Output: One-way ANOVA tests

> anova(lm(BM1~factor(season)+factor(year),data=new))

Analysis of Variance Table

Response: BM1

Df Sum Sq Mean Sq F value Pr(>F)

factor(season) 3 73117 24372 1.0293 0.3807

factor(year) 3 70566 23522 0.9934 0.3970

Residuals 199 4711881 23678

> anova(lm(BM2~factor(season)+factor(year),data=new))

Analysis of Variance Table

Response: BM2

Df Sum Sq Mean Sq F value Pr(>F)

factor(season) 3 2071 690.3 3.1518 0.02602 *

factor(year) 3 14250 4750.0 21.6891 3.393e-12 ***

Residuals 199 43582 219.0

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

> anova(lm(BM3~factor(season)+factor(year),data=new))

Analysis of Variance Table

Response: BM3

Df Sum Sq Mean Sq F value Pr(>F)
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factor(season) 3 1142.6 380.87 2.4606 0.06388 .

factor(year) 3 594.7 198.23 1.2807 0.28215

Residuals 199 30802.6 154.79

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

> anova(lm(BM4~factor(season)+factor(year),data=new))

Analysis of Variance Table

Response: BM4

Df Sum Sq Mean Sq F value Pr(>F)

factor(season) 3 55763 18587.8 3.7277 0.01224 *

factor(year) 3 26751 8917.0 1.7883 0.15065

Residuals 199 992283 4986.3

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1
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